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Quenched and annealed disorder in randomly grafted copolymer melts
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A model of randomly grafted\B copolymer melts is constructed in which flexilBepolymer grafts are
statistically attached at three possible sites along flexdbfgolymer backbones. An incompressible melt of
such molecules is examined theoretically at equilibrium for two situati@fysthe grafting is irreversible so
that the chemical disorder associated with the statistical placement of the gragfienshedand (2) the
grafting is reversible so that the disorderaisnealed Because of the simplicity of the model, we are able to
exactly carry out the two types of disorder averages, yielding effective field theories for the quenched and
annealed cases. These field theories are investigated in the mean-field approximation, but without further
invoking the usual weak-amplitude random phase approximation. Our results clarify the conditions for which
guenched and annealed averages can be interchanged.
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[. INTRODUCTION traditional anionic and cationic polymerization methods.
Over the past decade, there have been a number of theo-
Block and graft copolymers are fascinating materials thatetical studies of chemical disorder effects on the self-
can exhibit unusual combinations of properties resultingassembly behavior of polymer blends and copolymers
from their ability to self-assemble into nanostructured mor{6—19. Of primary interest to such investigators has been
phologies[1]. This so-called microphase separation of co-the phase behavior &iB random copolymers andB ran-
polymers arises from the competing effects of repulsion bedom multiblock copolymers with different statistical models
tween dissimilar polymer segments and the intramoleculaof the sequence distributions of the two types of monomers
chemical linkages that hold the blocks or grafts togefér  (blocks. Such studies also have relevance to protein folding
Copolymers that are prepared for commercial use are oftephenomena. There have also been a few investigatioA8of
not pure materials, but represent complex mixtures of molgraft copolymers where the locations of the grafting points
ecules with varying block lengths, compositions, overall mo-are random variable20—24. Some common themes arise
lecular weight, and architecture. For example, styrenic trifrom these studies; specifically, that large amounts of poly-
block and starblock copolymers are typically dispersity can lead to a competition between macrophase
“contaminated” with varying amounts of diblock copoly- separation and microphase separation, delineated in some
mers. Significant concentrations of such diblock impuritiescases by Lifshitz tricritical points, and that the length scales
can damage the large strain recovery characteristics of theof the mesophases are strongly temperature dependent, un-
moplastic elastomers based on these matdr&lsGraft co-  like pure block copolymer systems. Nevertheless, there are a
polymers, which are typically prepared by reactive blendingnumber of unsatisfactory features surrounding these theoret-
processes, are inherently even more “architecturally disorical results.
dered” since the random placement of reactive grafting sites In most chemically disordered heterogeneous polymers,
and the statistical nature of the grafting reactions leads tthe disorder igjuenchedn that it is locked permanently into
molecules with large variations in the number and placementhe macromolecules by virtue of covalent or other strong
of grafts[4]. bonds. A few systems, such as polyesters capable of transes-
Despite the prevalence of chemical disorder in commerierification, are exceptions; in these cases the disorder can
cial copolymer materials, very little is understood from aannealin time by means of breaking and reforming chemical
theoretical standpoint about the ramifications of such disorbonds. Theoretically, this difference amounts to averaging
der on phase behavior, self-assembly, and physical propethe partition function of the system over the random disorder
ties. This lack of understanding has become more acute imariables in the annealed case and the free en@ngloga-
recent years with the advent of controlled free radical poly+ithm of the partition functionin the quenched case. Theo-
merization method$5]. These techniques have created ex-rists to date have performed such quenched averages only in
citing opportunities for producing new types of block andthe limiting case of weak segregatiéwhen the composition
graft copolymers, including the incorporation of highly func- variations defining the mesophases are small in amplitude
tional monomers, but are inherently less “controlled” than The replica formalism used in spin glass physics is useful for
this purpos€ 25], but the formalism is only tractable in a
weak segregation expansion. In contrast, for some models of
*Electronic address: deena@physics.ucsb.edu annealed disorder it is possible to analytically average the
"Electronic address: ghf@mrl.ucsb.edu partition function over the disorder variables without limiting
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eral case. Starting with a coarse grained picture of Gaussian
T ;. chains and adding in binary interactions parametrized by a
\/"‘/‘/ \‘/‘\\ (AB) Flory-Huggins parametey and an incompressibility
A ’ TN e constrainf 26], the configurational partition function is
\//“\ I m i Uo[Ral - UglRg]
S R I z=11 H J D[Rai]D[Rgjle VelRal ~VdlRs
FIG. 1. Randomly grafted copolymer system with three possible X exp{ - UoXj drPA(r)PB(r))

graft sites per backbone. All eight possibilities are shown but note
that there are only six topologically distinct species. % H S(a(r)+ pa(t)— po). 1)
the applicability of the theory to weakly segregated systems.

One major unresolved issue is under what conditions arén this expression thé functional enforces incompressibility
heterogeneous polymer systems with quenched and anneall¥ setting the total microscopic densitiesAfnd B mono-
disorder different? For example, one might guess that in aners,pa(r) + pg(r), at each point in space equal to a con-
very large system with quenched disorder, frustration astantp,. Monomer(statistical segmehtvolumes of the two
some location in a fluid could be relieved by exchangingspecies are assumed equal and given$y 1/p,. Implicit in
molecules with more appropriate molecules drawn from thehe path integrals over the backbone conformatiBpg(s)
reservoir. An annealed system could achieve the same effeghd the graft conformationBg;(s) are constraints that fix
by simply transforming the unhappy molecules at the locathe architecture of each of thepolymers such that one end
tion into more suitable ones. It is important to understand thef each of theB grafts is tethered to a fixed place along one
relationship between the two types of systems better becausg the A backbones. We note that our model allows for free
if quenched averages can be accurately replacegibpley  (ungrafted A homopolymer, but assumes that there are no
annealed averages, a much more complete theoretical analyngraftedB chains.

sis of the structure and phase behavior of chemically disor- The statistical weight associated with the conformations

dered polymer systems would be possible. of the Gaussian chain segments is giveneby':
In the present paper, we tackle this issue in the context of
a very simple model of randomly graftéd copolymers. As d (N [dRy(s)|?
shown in Fig. 1, we consider an incompressible melt of flex- Uo[Rk]IZ >2)6 ds‘ gs |+ K=AB. (2

ible polymer chains in which each typgebackbone contains
three sites at which typB grafts can be attached. The graft- T

) . o he statistical segment lengths, given re for simplicit
ing sites are equally spaced and the probabilities of attact}-aken to be the game on t?oth tgeandhlgachain segrr)nen%/s
ment of the various sites are uniform and uncorrelated. W '

%he degrees of polymerization of theandB chains areN,
further.assume thf"lt tha backbgnes and. thB .grafts ar  and Ng, respectively, andl is the spatial dimension. The
monod|sper§e. This mode.l, whlle'unreallstlc in several aSF‘Picroscopic density operators are given by
pects, contains the essential physics of a varying number o
grafts per moleculéfrom zero to thregpand varying place- . Ny
ment of those grafts along the backbone. Because the total pe(1)=2> f dso(r—Ryi(s)), k=AB. )
number of species can be easily enumerated, it is possible to P70
exactly perform both quenched and annealed averages for
this model,independentf any simplifying assumptions such

as weak segregation. As a result, we will be able to investi

Following the well-known procedure described, e.g., in a
recent review[26], we can transform this partition function

i i . ; . from an expression involving path integrals over all polymer
gate in detail the difference in self-assembly behavior be¢q o mations to a new expression involving functional in-

tween systems containing quenched and annealed disord?égrab over two fields. This is done by performing a

The main focus of this paper is to study \{vhether treating thq—|ubbard-8tratonovich transformation to decouple the Flory-
cysorder as ?””ea'ed reasonably approximates a more realﬁhggins interaction term, which introduces a field (r),
tic system with quenched disorder. and by expressing the incompressibilifyfunctional in ex-
ponential form, which introduces a second field(r). After
Il. MODEL rescaling all spatial coordinates by the radius of gyration for
_ ) an ideal B chain Rgg=b+Ng/2d and the fieldsw. by a
We consider a melt oh polymers, each comprised of & factor of 1N, the partition function can be transformed into

flexible homopolymerA backbone along which flexible 5 form involving functional integrals over the.. fields:
grafts of homopolymeB are attached. The placement of the -

B grafts is random and varies from polymer to polymer. We CHIW W]

shall later specialize to the case where the grafts can be at- Z:f D[W—]f Dlw, Je " (4)
tached at only three equally spaced sites along @alshck-

bone, as in Fig. 1, but will begin by discussing a more gen4in which the effective Hamiltoniam[w_ ,w, ] is given by
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C
Hlw_ -W+]:mf dr W%(r)+c(fA_fB)f drw_(r) Qi[WA1WB]:f D[RAJEXF{_UO[RA]_J ds Wa(Ra(S))

k

—icf dr er(r)—Ei niin Qi[w_ w_1]. X Hl gs(Ra(7)),1), 9
j=
®) whereqg(r,s) is a propagator for th& grafts that satisfies
In this expression,C=p0/(NB/RgB) is a dimensionless the following complex diffusion equatiof27:
polymer concentration parametég=nN,/poV is the aver- 90s(r,S)=V2qg(r,s)—wg(r)gg(r,s), 0<s<1
age volume fraction oA monomers, andg=1—f, is the (10)

average volume fraction & monomers. The last term in Eq.

(5) represents a sum over all the different species of polymesubject to the initial conditiong(r,0)=1 for the free end of
architecture, where; denotes the number of chains of eachthe graft ats=0.

species andQ; is the partition function for a single polymer ~ We can complete the integration over the backbone con-
with that architecture. So for example, the model copolymeirformations to expres®; as the volume average of an effec-
melt shown in Fig. 1 would have a sum over eight terms. Intive A propagatoig;(r,s) ats=1:

the thermodynamic limit, where the total number of poly-

mersn=23;n; becomes large, the sum can be written as an 1

n; The backbone propagator is divided inte- k segments,
n2 inQ=n(inQ) (6)

Qai(r,9)=aW(r,s) for r<s<7; j=01,...k

in which the angular brackets denote an ensemble average
over the different polymer architectures.

We model the probability distribution function of the
polymer species by assuming there are uncorrelated,
equally spaced sites along ea&libackbone, each site with a Ng _ , ,
probability p of having aB branch attached. Figure 1 evi- N—ﬂsqgi)(f,s)zvzqgi)(r,s)—WA(F)CIX'?(RS) (13
dently corresponds to the caserof=3. The probability of A
having a polymer of speciéswhich hask grafts at contour  ang is subject to the following initial conditions:
locations 7;,7,...,7¢ along the backbone ip;=p*(1
—p)™ K. The partition function associated with it is qgii)(r,Tj)=qgi—1)(r,7j)q8(r,1), i=12,...k

TOEO, Tk+151, (12)

where each segment satisfies the diffusion equation

: Or,0=1. 14
Qi[WAvWB]:fD[RA]jl;[l JD[RBj]5(RBj(O) ai’(r.0) (14)

It proves convenient to also define a backwards propaga-

tor qi(r,s) that has branches at {r),(1
—Ral(7j))expg —Uo[Ral—Uo[Rg|] —7_1), .. .,(1— ) and is similarly subdivided as
T . ()
—fdSWA(RA(S))—fdst(RB,-(S))). Ani(rS)=AaT(r.S)
7) for (1-7jy1)<ss(l-7—j), j=01,...k 15

The chemical potential fields, andwg are complex linear

e . Each segment of this function also obeys the diffusion equa-
combinations of thev_ andw, fields:

tion (13) and is subject to the following initial conditions

Wa(F) = =w_(r)+iw..(r), A (r 1=y )=aa0 (1= 7 0)ge(r D),
wg(r)=w_(r)+iw,(r). 8 i=1,2,...k
After integrating out the positions of tH& monomersQ); an9r,0=1. (16)

can be expressed as a path integral over a single space curve
(representing the backbone conformajianan external po-
tentialwa(r) with an additional statistical weighjg(r,1) at

each of the branch points along the backbone. Aside from In the situation of a quenched distribution of branch sites,
potential independent prefactors, we apply the above formalism and make the replacement

A. Quenched case
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configurations. Assuming that this situation holds, the saddle

Z niln Qi=”2i pilnQ;, (170 point equations for the fields correspond to
where the sum on the right hand side is over all species i oH _ 1 [WA(T) —Wg(r)]+ da(r)—fo=0
containing any number of branches at therescribed sites C owa(r) 2xNg™ ° . A AT
and runs from 1 to 2. (23
1 6H 1
B Annealed case & S = 2N W) ~Wa(1) 1+ da(r) ~ =0,
In the case of an annealed distribution of branch sites, we B XN (24)
can directly average the partition functi@over the disor-
der. After the Hubbard-Stratonovich transformation, this im- here
plies that we can independently average the partition func-
tion Q for each chain. Equivalently, the annealed case n &(In Q)
follows by the approximation rN=-——= , k=AB 2
y the app H(==C sw) (25
(INQ)=In(Q) (18)

represents the local volume fraction of tygemonomers.
in the formulas appropriate for the quenched case. These nonlinear equations for the “self-consistent” potential
If there arem uncorrelated grafting sites at positions fieldsw, ,wg are the equations of self-consistent mean-field
T1:72, . .., Ty along the backbone such that at each sitetheory (SCMFT) [28-30.
there is a branch with probabilityand no branch with prob- & (r) can be decomposed into a sum of tergg(r),
ability 1—p, then the averaged partition function is which represent the contribution to the local volume fraction
of type k monomers from polymers of species

n SinQ;

<Q>:f D[RA]eXF<_UO[RA]
c2 P

(26)

d)k(r):Ei bri(r)

J’ ds Wa(Ra(S))

m

11 Tpae(Ra(7) D+1-p). . . |

= Each term in this sum can be written in terms of the single-
(19) polymer propagatorg27]

This is similar to the case of a single branched polymer with f AP
m branches except thafg(r,1) is replaced by gg(r,1)+1 bai(r) = 0, ds Gui(r )T (r.1-s), (27)
—p at each site. Things are simplified because now we only
have onedisorder-averaged propagatdo deal with. As be- D,
fore, we can write ¢Bi(r)— L E f ds G(r,s)ak;(r.1-s). (29
1
<Q>:vf drq(r,1). (20) qg;;(r,s) is the propagator of thgth B chain of theith
polymer species. It satisfies E{.0) and starts on the end of

Breakingq(r,s) up intom+1 sections leads to the B chain tethered to the backbone. It is therefore subject to

_ the initial condition
q(r,s)=q¥(r,s) for mj=s<rj.q, j=01,...m, _
akij (O =al V(.7 an(r,1— 7). (29
TOEO, Tm+151. (21)
) o ) These equations complete the description of SCMFT for the
Each section obeys the diffusion equatid®) and has the ase of a random graft copolymer melt wighenchediisor-

initial condition der.
i i In the annealedcase, the formulas are slightly different.
)] )=qgl-1 ' — - . S
a¥(r.m) =g (. 7)[pae(r. 1) +1-p], The local volume fraction of speci&monomers is given by
j:1,2,...m, n 5|n<Q>
du()=—= (30
q©(r,0=1. (22) C dwy(r)

and can also be written as a sum of the volume fractions of
Ill. SELF-CONSISTENT MEAN-FIELD THEORY the diﬁerent po'ymer Speciesl

In the limit of largeC, which is achieved at high concen- N
tration of polymers or high molecular weight, the functional r MN=— ——— Qi 31
integrals in Eq.(4) are dominated by the saddle point field A= 2 Pulr)= C( Q Z 31
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Again, these species volume fractions can be expressed Bince the saddle points can be anywhere in the complex
terms of single-chain propagators, but this time normalizeglane,w_ and w, have real and imaginary parts, so the
with the averaged partition functiaf@Q): complex equation§37) are actually a set of four real equa-
; L tions. It turns out that the saddle point valuevof is purely
bai(r)= A_p'f ds GAi(r,S)qL(r,l— s), (32) real andw is purely |mag|nar3[26],. SOWp andwg are both
(Q) Jo real and the number of real equations is reduced to two.
Writing Egs. (37) in terms of the realv,(r) andwg(r)
fields and using an explicifforward Eulej time discretiza-

fap; 1
d)Bi(r):B_pzfods%(r’s)qéij(r’l_s)' 33 ion leads to

(Q 7

It is possible to show from Eqg927) and (28) for the
qguenched volume fractions that Y3/ dr ¢;(r)=f.p;, in- _ _
dicating that the average volume fraction of polymers from WA H(r) =Wh(r)+2\
each species is fixed irrespective of the saddle point value of
the w fields. This is not necessarily true for the annealed .
ensembles where the free energy may be lowered by chang- + ¢{3(r)—f3},
ing the average number of polymers in each species. How-
ever, the overalA and B volume fractions () fdr ¢, (r)
=f\ are fixed in both situations, quenched and annealed.

Alternatively for the annealed case, instead of keeping whH(r)=wh(r)+ 2\
track of all the different propagators for each realization of
the disorder, we can simply use the averaged propa¢2®pr

1 ) )
m[WE(f)—W}a(r)]

m[w&(r)—wk(r)]

to calculate the totah and B monomer densities: + ¢1A(r)_ fal. (38)
fa (1
¢>A(r)=—f dsqr,s)q'(r,1-s), (34)
(Q)Jo

Superscripts in these expressions refer to the time step.
fg 1 Our basic procedure is as follows. We start with some initial
bp(r)=— >, J’ ds cf;j(r,s)qB(r,l— s). (35  configuration for thewy fields, either random or containing
QT Jo the symmetry of a particular phase. These are used to deter-
mine the propagators by solving the diffusion equatiti®

In this case, the backwards propagatd{j(r,s) starts  21d(13). The propagators are used to fid and é- from
from the end of thdB chain tethered to the backbone at §ite Eqs.((2)75 and (pzs)pfc?r the quenléhed caslzqor Eo[déz) and

This object satisfies the diffusion equatitt0) with the ini- (33) for the annealed case. We then updateand wg ac-

tial condition cording to Eq.(38), the updated fields are used as the new
T (=D Nt r 1— initial fields, and the procedure is repeated until the fields

Ggj(r,0) =g (r,7)a’(r, 1= 7). (36) attain equilibrium values. At every iteration the monomer
It is important to note that Eq$34) and (35) are simpler volume fraction of each species is calculated so it is easy to

and less computationally demanding to use for the anneal onitor the density configurations. In the case of annealed
case than Eqg32) and(33). However, Eqs(34) and(35) do Isorder, a considerable computational savings is obtained by

not contain information on the monomer densities of the in€Stricting attention to the averaged propagators and substi-

dividual chain species, only on the overall monomer densituting Egs.(34) and(35) for Egs.(32) and(33) up until the

ties irrespective of what type of polymer it is attached to.last field iteration At this point, Eqs-(32_> and (33) are em-
Nevertheless, they can provide a considerable cost savings fi0Yed one more time so that the individual species densities

situations that do not demand such species accounting. My be accessed. L . .
We solve the various diffusion equations using a pseu-

dospectral algorithm developed by Tzeremetsal. [31],
which is referred to as aplit-step Fourieralgorithm. The

In order to find saddle points numerically and therebyintegrals in equations such as E¢&7), (28), (32), and(33)

IV. NUMERICAL METHODS

implement SCMFT, we use a relaxation method are approximated using Simpson’s rule, which is no more
expensive computationally than a midpoint approximation,
SoH but has a truncation error that goes like* and is consistent
dw(r,t)= _)‘m’ GW . (1,1) = _)‘m’ with the accuracy of the split-step Fourier algorithm.
(37) All simulations were done in two dimensions on a 64

X 64 lattice with periodic boundary conditions. Contour step
the equilibrium values of which correspond to the saddlesizes for theA backbone andB grafts were set at\s,
point equations. Here “time’ is a continuous parameter =0.0125 and\sg=0.025, respectively. In all the results pre-
describing the progress of field iterations to approach &ented, we observed no noticeable changes upon further re-
saddle point and\ is an arbitrary relaxational parameter. ducing these contour step sizes.
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FIG. 2. Density plot ofA monomers for the quenched system witk 0.333, N5 /Ng=2, yNg=10. (a) Density of A monomers(b)
Density of A monomers from polymers with zero branch@s,one branch(d) two branches, an¢e) three branches. Distances are in units
of Ryg. Box size is 12.& 14.78.

V. RESULTS AND DISCUSSION and with the backbone twice as long as a brahg{YNg
_ =2. This sets the average volume fractions Afand B
A. Quenched versus annealed disorder monomers atf,=0.667 andfg=0.333, respectively. We

started with random initial conditions in a periodic cell of
For the purposes of comparing the behavior of thearea (25.Rgg)”. For yNg=5, i.e., above the order-disorder
quenched and annealed ensembles we restrict attention to tH@nsition (ODT), we observed a microphase segregated
case ofm=3 and thereby limit the possible polymer archi- Phase with hexagonal packing where tle monomers
tectures to those with zero, one, two, or three branches. Eaépranche}:form the insides of the circular aggregates. Close
polymer backbone has three possible graft poins=atl/4, 0 the ODT, a defect-free hexagonal phase forms edatly

. g . xNg=5 it takes around 5000 time steps using a relaxation
1/2, and 3/4. At each of these siteBa&hain is attached with parameter of\=0.5). At higher yNg, the interfaces are

probability p. This model results in the eight types of poly- gieeper and longer runs are required to anneal out defects

mers, as shown in Fig. 1. Within the course of our simulafrom simulations that are started from random initial condi-
tions, we monitored the densities 8fand B segments at- tjons.

tached to polymers with zero, one, two, and three branches. In order to look more closely at the structure of theB
One set of simulations for thguenchednodel was per- interfaces, we chose a box size to capture one cell of the
formed with p=0.333(average of one branch per polymer hexagonal lattice and seeded it using an initial condition with
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FIG. 3. Simulation results for quenchddolid lineg and an- 0 i
nealed(dashed linessystems with the parameters of Fig. 2. Volume
fractions ofA andB monomers from polymers with zero, one, two,
and three branches are taken from a slice through the center of the 51 N >
circles as shown by the dashed line in Figr)2The overall volume
fractions(not shown of A or B monomers are indistinguishable for g . o

the quenched and annealed systems.

FIG. 4. Simulations of copolymers with quenched disorder and

hexagonal symmetry. The box size was determined by fixingarametersp=0.333, No/Ng=1, xNg=5.9. (a) Total volume
the number of lattice points to 6464 and varying the lattice raction of A monomers(b) Volume fraction ofA monomers from
spacing in thex and y directions to find a minimum free 28 _branched copolymers afgj three branched copolymers. Box
energy per unit volumeH/V). Figure 2a) shows the total SZ€ 1S 25-8geX25.0Rgs .
volume fraction ofA (backbong monomers for the quenched
system. Figure ) shows the contribution to th& volume  Fig. 3@ the volume fraction profiles of a one-dimensional
fraction from the polymers with no branches. Figurée)2 slice cutting through the center of the circles as indicated by
(d), and (e) correspond to thé\ volume fraction contribu- the dashed line in Fig.(d). Interestingly, thetotal volume
tions from one, two, and three branched polymers, respedraction of A monomers is indistinguishalita the quenched
tively. The zero branched polymeré hhomopolymerstend and annealed cases, but the partial volume fractions of the
to be concentrated in th&-rich region, particularly at three- different species differ as is shown in FigaB Figure 3b)
fold vertices delineating adjacent Wigner-Seitz cells. In conshows the analogous plot for tH& monomers. There are
trast, polymers with two and three grafts tend to be moramore zero and three branched polymers in the annealed sys-
strongly localized along thA-B interfaces. This allows their tem than in the quenched system and less one and two
branches to more easily stretch into the discigtéch do-  branched polymers. This can be understood by realizing that
mains. in the annealed system, a one branched polymer situated in

Simulations of the annealed model were very similar; thethe A region and a two branched polymer located iBa
ODT occurred at roughly the saméNg and the hexagonal domain can lower their overall energy by exchanging a
microphase morphology was also observed with the sambranch (and thereby annihilatingto create a pair of zero
periodicity. To compare them in detail, we have plotted inbranch and three branch polymers. The global population of
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(a) o8 (a)

®) o (b
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FIG. 5. Simulations of copolymers with quenched disorder and ~ FIG- 6. Simulations of copolymers with quenched disorder and

parameterp=0.333,N,/Ng=1, yNg=7.0(a) Total volume frac- ~Parametersp=0.333, No/Ng=1, xNg=10.0. (a) Total volume
tion of A monomers(b) Volume fraction ofA monomers from zero ~ fraction of A monomers(b) Volume fraction ofA monomers from

branched andc) three branched copolymers. Box size is g6 zero branched andc) three branched copolymers. Box size is
X 25.6Ryp .. 25.8RypX 25.6Ryp.

species components, in which case differences between an-

branches and overall composition is not affected by this exlaealed(living) and quenched systems can be observed,

change, but the individual species densities clearly respon
to the local thermodynamic forces that act upon them.

The observation that theverall volume fraction patterns
and corresponding saddle point potential fields are indistin- A very different phase behavior was found in simulations
guishable between the quenched and annealed cases lendsen we changed the block length ratiosNg/Ng=1 and
strong support to the naive expectation that the free energidept p=0.333. This case of longer grafts is compositionally
and thermodynamic properties of block and graft copolymersymmetric withf ,=fg=1/2. Figures 4 —6 show this system
with quenched and annealed disorder should be identical iwith quenched disordeat various yNg parameters. These
the thermodynamic limit. We caution the reader, howeverwere started with random initial fields and in a simulation
that this conclusion is likely restricted to microphase sepacell of area 25.B;gX25.6R;g. The system exhibitsnac-
rated states, and not to the “glassy states” that have beerophase separatioat yNg=5.9 as shown in Fig. 8. There is
postulated to exist in certain random heteropolymer modela region of nearly puréd monomers and a region that con-
[19,15. It is also important to note that certain properties ortains a mixture ofA and B. From the species volume frac-
measurements may also be sensitive to particular polymerons, we see that tha&-rich domain is predominanthj ho-

B. Macrophase and microphase separation
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FIG. 7. 7 vs xNg for the annealed system with=0.333, macro N,
Na/Ng=1. The quenched system correspondgite 1. 0 5 10 15 —

20 N,
mopo!ymer (z_ero branched pol_yme)r,s Wh'l_e the _m|xed FIG. 8. Phase diagram indicating regions where the disordered
domam contains the other Species. At a sl!ghtly h|gher Seg|f)hase is unstable to macrophase or microphase separation according
regation strength ofNg=7.0, depicted in Fig. 5, there is a {5 the RPA.
transition to amicrophasemorphology with theA monomers
forming the insides of the circular domains. Even after very 1
long runs (100000 time steps using=0.5) these do not _j dr
form a defect-free hexagonal array, although starting the v
simulations with a hexagonal “seed” structure does produce
an ordered array with lower energy. At even highg¥g
=10, shown in Fig. 6, we observe a transition to a lamellaffor the zero, one, two, and three branched volume fractions
microphase structure. Defects are prevalent here as well arg different values of¢Ng using the annealed system with
indicate the existence of metastable states, since the perfectlye same composition as the systems shown in Figs. 4—6. At
ordered lamellar structure has lower free energy. xNg=5 both the quenched and annealed ensembles are in

The annealed cas@ot shown follows a similar pattern  the homogeneous disordered phase and are indistinguishable.
to that just described, but with the change from macrophasgvidenﬂy the largest deviation occurs ghg=7 where the
to microphase and hexagonal to lamellar OCCUrring at Slightl)énnea|ed System shows macrophase Separation and the
different values OfXNB. For instance, th@(NB:7 case quenched shows microphase Separation_
shown in Fig. 5 reverts to macrophase separation when the \When the grafting probability was increased
disorder is annealed. For larger values of the segregation 0.667, or when the length of the backbone was increased
strength, we have also observed that the period of the lame}g|ative to the branches to a valueMf /Ng=2, we did not
lar phase is slightly larger for the annealed system than thgpseryve macrophase separation for any valughyf. Foster
quenched. We determined this by seeding the systems witha ). [24] performed a random phase approximati®&PA)
periodic function(cosing of period equal to the length of a ca|culation on a closely related model to determine the pa-
side of the simulation cell and then varying this length toyameter range in which the homogeneous disordered phase
minimize the free energy per unit volume. was unstable to macrophase or microphase separation. In this
These discrepancies in phase behavior are due to the di&pproximation, where the free energy is expanded to qua-
ferent amounts of the individual species in the quenched angratic order in thew fields, there is no distinction between
annealed systems. As previously stated, the average volumge quenched and annealed ensembles. Figure 8 shows these
fractions of each species for the quenched system are fixed gfapjility results for the present caserof= 3 where there are
(IN) fdr puene"®dr)=f, p; while the average volume at most three branches per backbone.
fractions for the annealed system may deviate from these According to this phase diagram, systems with grafting
values. If we fix the average volume fractions to be the samesrobabilities abovep~0.25 should not be subject to mac-
by adjusting thep;’s, then it is straightforward to show that, rophase separation. However we observe macrophase sepa-
at the mean-field level, the two theories are the same. Ifation in our simulations for grafting probabilities as high as
other words the annealed system with some given valyg of p=0.5. Since our results do not involve any approximations
is the same as a quenched system with/ beyond the mean-field approximation, this discrepancy re-
= (1/fAV) [dr g@"ead(r) - However p/ may not corre- veals the limitations of the RPA. In particular, our numerical
spond to the probability distributiop“(1—p)™ ¥ described calculations do not make assumptions that the density and
in our model for a polymer witlk branches andn sites. In  potential fields are either small in amplitude or slowly vary-
Fig. 7 we plot the ratio ing in space.

T A
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VI. CONCLUDING REMARKS served, larger differenced@ total volume fractions and lo-

We have constructed a simple, yet reasonably realistiCcanons of phase boundar)dsetween quenched and annealed

field theorv model of randomlv arafted copolvmer melts thatSystems were detected. In part, this may reflect the finite size
y Y9 poly of our simulations, but the discrepancies appear too large and

has permitted a detailed comparison between systems Wheirnesensitive to numerical refinement for this to be the only

two cases by. myokmg the mean-field approximati®C- molecular bonding can produce genuinely different equilib-
MFT). In qualitative terms, quenched and annealed systenﬁum states of self-assembly than can be obtained in

are quite similar and under most circumstances that we Canuenched systems. Thus, it is our view that the naive picture

Z)Jeers;eésltbshgg:g ?ﬁaﬁgrrglllssﬁlgretoe?fﬁ:ﬁ)é%'r:r?;eea?ggn;\?ee}_f equivalence of quenched and annealed systems in the ther-
9 y P y modynamic limit does not strictly hold. Finally, we note that

B e e cononiny discrepancies between quenched and amneald ystens
P ’ n these regions of the phase diagram will undoubtedly be

ume fraction profiles and fr.ee.energles of quenched "".nd.ans'ensitive to fluctuation corrections not included in our SC-

nealed systems are very similar. Nevertheless, the distribys . .

. L . L FT simulations.

tions of individual copolymer species within such

mesophases can be quite different in a system where the

chemical disorder is fixed in the molecul@giencheg than

in a “living” system where polymers can change their com-  This work was supported by the National Science Foun-

positions or architecture@nnealejl dation under Grant No. DMR-0312097. Use of the UCSB-
It was interesting that when we performed simulationsMRL Central Computing Facilities supported by the NSF is

closer to the ODT where macrophase separation was olalso gratefully acknowledged.

ACKNOWLEDGMENTS

[1] F.S. Bates and G.H. Fredrickson, Phys. To8&y32 (1999. [16] A.M. Gutin, C.D. Sfatos, and E.l. Shakhnovich, J. PhyR7

[2] L. Leibler, Macromoleculed.3, 1602 (1980. 7957(1994).

[3] Thermoplastic Elastomer&nd ed., edited by G. Holden, N. R. [17] C.D. Sfatos and E. | Shakhnovich, Phys. REg8 77 (1997).
Legge, R. P. Quirk, and H. E. Schroedédanser/Gardner, [18] C.D. Sfatos, A.M. Gutin, and E.I. Shakhnovich, Phys. Rev. E

Cincinnati, OH, 1998 48, 465(1993. _
[4] H. Pernot, M. Baumert, F. Court, and L. Leibler, Nat. Mater [19] A.K. Chakraborty, E.l. Shakhnovich, and V.S. Pande, J. Chem.
54 (2002)' ' o ' ' B ' Phys.108, 1683(1998.

T [20] S. Qi, A.K. Chakraborty, and N.P. Balsara, J. Chem. Phy5.
[5] M. Kamigaito, T. Ando, and M. Sawamoto, Chem. Rev. 3387 (2001,

(Washington, D.Q.101, 3689(2003). [21] S. Qiet al, Phys. Rev. Lett82, 2896(1999.
[6] A.V. Dobrynin and L. Leibler, Europhys. Let86, 283(1996.  [22] S. Qi and A.K. Chakraborty, J. Chem. Phy45, 3401(2002).
[7] A.V. Dobrynin and L. Leibler, Macromolecule80, 4756  [23] A. Shinozaki, D. Jasnow, and A. Balazs, Macromolec@@s

(1997). 2496 (1994).
[8] A.N. Semenov, J. Phys. I, 1489(1997. [24] D.P. Foster, D. Jasnow, and A. Balazs, Macromolec@igs
[9] A.N. Semenov and A.E. Likhtman, Macromoleculk 9058 3450(1995.

(1999. [25] M. Mezard, G. Parisi, and M. A. Virasor&pin Glass Theory
[10] A.N. Semenov, Eur. Phys. J. B), 497 (1999 and BeyongdLecture Notes in Physics Vol. @Vorld Scientific,

Teaneck, NJ, 1987

[11] A.V. Subbotin and A.N. Semenov, Eur. Phys. J7,449 (2002, [26] G.H. Fredrickson, V. Ganesan, and F. Drolet, Macromolecules

[12] G.H. Fredrickson and S.T. Milner, Phys. Rev. L&, 835

35, 16 (2002.
(199D. [27] K. Freed, Adv. Chem. Phy®2, 1 (1972.
[13] G.H. Fredrickson, S.T. Milner, and L. Leibler, Macromolecules [28] F. Schmid, J. Phys.: Condens. Matf; 8105 (1998.
25, 6341(1992. [29] M.W. Matsen and M. Schick, Phys. Rev. Let2, 2660(1994).
[14] E.I. Shakhnovich and A.M. Gutin, J. Phy&®arig 50, 1843  [30] M.W. Matsen and M. Schick, Curr. Opin. Colloid Interface
(1989. Sci. 1, 329(1996.
[15] C.D. Sfatos, A.M. Gutin, and E.l. Shakhnovich, Nuovo Ci- [31] G. Tzeremes, K.O. Rasmussen, T. Lookman, and A. Saxena,
mento D16, 879 (1994. Phys. Rev. B65, 041806(2002.

051802-10



