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Quenched and annealed disorder in randomly grafted copolymer melts
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A model of randomly graftedAB copolymer melts is constructed in which flexibleB polymer grafts are
statistically attached at three possible sites along flexibleA polymer backbones. An incompressible melt of
such molecules is examined theoretically at equilibrium for two situations:~1! the grafting is irreversible so
that the chemical disorder associated with the statistical placement of the grafts isquenched, and ~2! the
grafting is reversible so that the disorder isannealed. Because of the simplicity of the model, we are able to
exactly carry out the two types of disorder averages, yielding effective field theories for the quenched and
annealed cases. These field theories are investigated in the mean-field approximation, but without further
invoking the usual weak-amplitude random phase approximation. Our results clarify the conditions for which
quenched and annealed averages can be interchanged.
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I. INTRODUCTION

Block and graft copolymers are fascinating materials t
can exhibit unusual combinations of properties result
from their ability to self-assemble into nanostructured m
phologies@1#. This so-called microphase separation of c
polymers arises from the competing effects of repulsion
tween dissimilar polymer segments and the intramolec
chemical linkages that hold the blocks or grafts together@2#.
Copolymers that are prepared for commercial use are o
not pure materials, but represent complex mixtures of m
ecules with varying block lengths, compositions, overall m
lecular weight, and architecture. For example, styrenic
block and starblock copolymers are typical
‘‘contaminated’’ with varying amounts of diblock copoly
mers. Significant concentrations of such diblock impurit
can damage the large strain recovery characteristics of t
moplastic elastomers based on these materials@3#. Graft co-
polymers, which are typically prepared by reactive blend
processes, are inherently even more ‘‘architecturally dis
dered’’ since the random placement of reactive grafting s
and the statistical nature of the grafting reactions leads
molecules with large variations in the number and placem
of grafts @4#.

Despite the prevalence of chemical disorder in comm
cial copolymer materials, very little is understood from
theoretical standpoint about the ramifications of such dis
der on phase behavior, self-assembly, and physical pro
ties. This lack of understanding has become more acut
recent years with the advent of controlled free radical po
merization methods@5#. These techniques have created e
citing opportunities for producing new types of block a
graft copolymers, including the incorporation of highly fun
tional monomers, but are inherently less ‘‘controlled’’ tha
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traditional anionic and cationic polymerization methods.
Over the past decade, there have been a number of t

retical studies of chemical disorder effects on the se
assembly behavior of polymer blends and copolym
@6–19#. Of primary interest to such investigators has be
the phase behavior ofAB random copolymers andAB ran-
dom multiblock copolymers with different statistical mode
of the sequence distributions of the two types of monom
~blocks!. Such studies also have relevance to protein fold
phenomena. There have also been a few investigations oAB
graft copolymers where the locations of the grafting poi
are random variables@20–24#. Some common themes aris
from these studies; specifically, that large amounts of po
dispersity can lead to a competition between macroph
separation and microphase separation, delineated in s
cases by Lifshitz tricritical points, and that the length sca
of the mesophases are strongly temperature dependent
like pure block copolymer systems. Nevertheless, there a
number of unsatisfactory features surrounding these theo
ical results.

In most chemically disordered heterogeneous polym
the disorder isquenchedin that it is locked permanently into
the macromolecules by virtue of covalent or other stro
bonds. A few systems, such as polyesters capable of tran
terification, are exceptions; in these cases the disorder
annealin time by means of breaking and reforming chemic
bonds. Theoretically, this difference amounts to averag
the partition function of the system over the random disor
variables in the annealed case and the free energy~or loga-
rithm of the partition function! in the quenched case. Theo
rists to date have performed such quenched averages on
the limiting case of weak segregation~when the composition
variations defining the mesophases are small in amplitu!.
The replica formalism used in spin glass physics is useful
this purpose@25#, but the formalism is only tractable in
weak segregation expansion. In contrast, for some mode
annealed disorder it is possible to analytically average
partition function over the disorder variables without limitin
©2003 The American Physical Society02-1
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the applicability of the theory to weakly segregated syste
One major unresolved issue is under what conditions
heterogeneous polymer systems with quenched and ann
disorder different? For example, one might guess that i
very large system with quenched disorder, frustration
some location in a fluid could be relieved by exchang
molecules with more appropriate molecules drawn from
reservoir. An annealed system could achieve the same e
by simply transforming the unhappy molecules at the lo
tion into more suitable ones. It is important to understand
relationship between the two types of systems better bec
if quenched averages can be accurately replaced by~simpler!
annealed averages, a much more complete theoretical a
sis of the structure and phase behavior of chemically dis
dered polymer systems would be possible.

In the present paper, we tackle this issue in the contex
a very simple model of randomly graftedAB copolymers. As
shown in Fig. 1, we consider an incompressible melt of fl
ible polymer chains in which each typeA backbone contains
three sites at which typeB grafts can be attached. The gra
ing sites are equally spaced and the probabilities of atta
ment of the various sites are uniform and uncorrelated.
further assume that theA backbones and theB grafts are
monodisperse. This model, while unrealistic in several
pects, contains the essential physics of a varying numbe
grafts per molecule~from zero to three! and varying place-
ment of those grafts along the backbone. Because the
number of species can be easily enumerated, it is possib
exactly perform both quenched and annealed averages
this model,independentof any simplifying assumptions suc
as weak segregation. As a result, we will be able to inve
gate in detail the difference in self-assembly behavior
tween systems containing quenched and annealed diso
The main focus of this paper is to study whether treating
disorder as annealed reasonably approximates a more re
tic system with quenched disorder.

II. MODEL

We consider a melt ofn polymers, each comprised of
flexible homopolymerA backbone along which flexible
grafts of homopolymerB are attached. The placement of th
B grafts is random and varies from polymer to polymer. W
shall later specialize to the case where the grafts can be
tached at only three equally spaced sites along eachA back-
bone, as in Fig. 1, but will begin by discussing a more g

FIG. 1. Randomly grafted copolymer system with three poss
graft sites per backbone. All eight possibilities are shown but n
that there are only six topologically distinct species.
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eral case. Starting with a coarse grained picture of Gaus
chains and adding in binary interactions parametrized b
(AB) Flory-Huggins parameterx and an incompressibility
constraint@26#, the configurational partition function is

Z5)
i 51

n

)
j
E D@RAi#D@RB j#e

2Uo[RA] 2Uo[RB]

3expS 2v0xE dr r̂A~r !r̂B~r ! D
3)

r
d„r̂A~r !1 r̂B~r !2r0…. ~1!

In this expression thed functional enforces incompressibilit
by setting the total microscopic densities ofA andB mono-
mers,r̂A(r )1 r̂B(r ), at each point in space equal to a co
stantr0. Monomer~statistical segment! volumes of the two
species are assumed equal and given byv051/r0. Implicit in
the path integrals over the backbone conformationsRAi(s)
and the graft conformationsRB j(s) are constraints that fix
the architecture of each of then polymers such that one en
of each of theB grafts is tethered to a fixed place along o
of the A backbones. We note that our model allows for fr
~ungrafted! A homopolymer, but assumes that there are
ungraftedB chains.

The statistical weight associated with the conformatio
of the Gaussian chain segments is given bye2Uo:

Uo@Rk#5(
i

d

2b2E0

Nk
dsUdRki~s!

ds U2

, k5A,B. ~2!

The statistical segment lengths, given byb, are for simplicity
taken to be the same on both theA and B chain segments
The degrees of polymerization of theA andB chains areNA
and NB , respectively, andd is the spatial dimension. The
microscopic density operators are given by

r̂k~r !5(
i
E

0

Nk
dsd„r2Rki~s!…, k5A,B. ~3!

Following the well-known procedure described, e.g., in
recent review@26#, we can transform this partition functio
from an expression involving path integrals over all polym
conformations to a new expression involving functional
tegrals over two fields. This is done by performing
Hubbard-Stratonovich transformation to decouple the Flo
Huggins interaction term, which introduces a fieldw2(r ),
and by expressing the incompressibilityd functional in ex-
ponential form, which introduces a second fieldw1(r ). After
rescaling all spatial coordinates by the radius of gyration
an ideal B chain RgB5bANB/2d and the fieldsw6 by a
factor of 1/NB , the partition function can be transformed in
a form involving functional integrals over thew6 fields:

Z5E D@w2#E D@w1#e2H[w2 ,w1] ~4!

in which the effective HamiltonianH@w2 ,w1# is given by

e
e

2-2
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H@w2 ,w1#5
C

xNB
E dr w2

2 ~r !1C~ f A2 f B!E dr w2~r !

2 iCE dr w1~r !2(
i

ni ln Qi@w2,w1#.

~5!

In this expression,C5ro /(NB /RgB
d ) is a dimensionless

polymer concentration parameter,f A5nNA /r0V is the aver-
age volume fraction ofA monomers, andf B512 f A is the
average volume fraction ofB monomers. The last term in Eq
~5! represents a sum over all the different species of poly
architecture, whereni denotes the number of chains of ea
speciesi andQi is the partition function for a single polyme
with that architecture. So for example, the model copolym
melt shown in Fig. 1 would have a sum over eight terms.
the thermodynamic limit, where the total number of po
mersn5( ini becomes large, the sum can be written as
average

n(
i

ni

n
ln Qi5n^ ln Q& ~6!

in which the angular brackets denote an ensemble ave
over the different polymer architectures.

We model the probability distribution function of th
polymer species by assuming there arem uncorrelated,
equally spaced sites along eachA backbone, each site with
probability p of having aB branch attached. Figure 1 ev
dently corresponds to the case ofm53. The probability of
having a polymer of speciesi which hask grafts at contour
locations t1 ,t2 . . . ,tk along the backbone ispi5pk(1
2p)m2k. The partition function associated with it is

Qi@wA ,wB#5E D@RA#)
j 51

k E D@RB j#d„RB j~0!

2RA~t j !…expS 2U0@RA#2U0@RB j#

2E ds wA„RA~s!…2E ds wB„RB j~s!…D .

~7!

The chemical potential fieldswA andwB are complex linear
combinations of thew2 andw1 fields:

wA~r !52w2~r !1 iw1~r !,

wB~r !5w2~r !1 iw1~r !. ~8!

After integrating out the positions of theB monomers,Qi
can be expressed as a path integral over a single space
~representing the backbone conformation! in an external po-
tential wA(r ) with an additional statistical weightqB(r ,1) at
each of the branch points along the backbone. Aside fr
potential independent prefactors,
05180
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Qi@wA ,wB#5E D@RA#expS 2U0@RA#2E ds wA„RA~s!…D
3)

j 51

k

qB„RA~t j !,1…, ~9!

whereqB(r ,s) is a propagator for theB grafts that satisfies
the following complex diffusion equation@27#:

]sqB~r ,s!5¹2qB~r ,s!2wB~r !qB~r ,s!, 0,s<1
~10!

subject to the initial conditionqB(r ,0)51 for the free end of
the graft ats50.

We can complete the integration over the backbone c
formations to expressQi as the volume average of an effe
tive A propagatorqAi(r ,s) at s51:

Qi5
1

VE dr qAi~r ,1!. ~11!

The backbone propagator is divided into k11 segments,

qAi~r ,s!5qAi
( j )~r ,s! for t j<s,t j 11 j 50,1, . . . ,k,

t0[0, tk11[1, ~12!

where each segment satisfies the diffusion equation

NB

NA
]sqAi

( j )~r ,s!5¹2qAi
( j )~r ,s!2wA~r !qAi

( j )~r ,s! ~13!

and is subject to the following initial conditions:

qAi
( j )~r ,t j !5qAi

( j 21)~r ,t j !qB~r ,1!, j 51,2, . . . ,k

qAi
(0)~r ,0!51. ~14!

It proves convenient to also define a backwards propa
tor qAi

† (r ,s) that has branches at (12tk),(1
2tk21), . . . ,(12t1) and is similarly subdivided as

qAi
† ~r ,s!5qAi

†( j )~r ,s!

for ~12tk2 j 11!,s<~12tk2 j !, j 50,1, . . . ,k.
~15!

Each segment of this function also obeys the diffusion eq
tion ~13! and is subject to the following initial conditions

qAi
†( j )~r ,12tk2 j 11!5qAi

†( j 21)~r ,12tk2 j 11!qB~r ,1!,

j 51,2, . . . ,k,

qAi
†(0)~r ,0!51. ~16!

A. Quenched case

In the situation of a quenched distribution of branch sit
we apply the above formalism and make the replacemen
2-3
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(
i

ni ln Qi5n(
i

pi ln Qi , ~17!

where the sum on the right hand side is over all spec
containing any number of branches at them prescribed sites
and runs from 1 to 2m.

B. Annealed case

In the case of an annealed distribution of branch sites,
can directly average the partition functionZ over the disor-
der. After the Hubbard-Stratonovich transformation, this i
plies that we can independently average the partition fu
tion Q for each chain. Equivalently, the annealed ca
follows by the approximation

^ ln Q&> ln ^Q& ~18!

in the formulas appropriate for the quenched case.
If there are m uncorrelated grafting sites at position

t1 ,t2 , . . . ,tm along the backbone such that at each s
there is a branch with probabilityp and no branch with prob
ability 12p, then the averaged partition function is

^Q&5E D@RA#expS 2U0@RA#

2E ds wA„RA~s!…D )
j 51

m

@pqB„RA~t j !,1…112p#.

~19!

This is similar to the case of a single branched polymer w
m branches except thatqB(r ,1) is replaced bypqB(r ,1)11
2p at each site. Things are simplified because now we o
have onedisorder-averaged propagatorto deal with. As be-
fore, we can write

^Q&5
1

VE dr q~r ,1!. ~20!

Breakingq(r ,s) up into m11 sections leads to

q~r ,s!5q( j )~r ,s! for t j<s,t j 11 , j 50,1, . . .m,

t0[0, tm11[1. ~21!

Each section obeys the diffusion equation~13! and has the
initial condition

q( j )~r ,t j !5q( j 21)~r ,t j !@pqB~r ,1!112p#,

j 51,2, . . . ,m,

q(0)~r ,0!51. ~22!

III. SELF-CONSISTENT MEAN-FIELD THEORY

In the limit of largeC, which is achieved at high concen
tration of polymers or high molecular weight, the function
integrals in Eq.~4! are dominated by the saddle point fie
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configurations. Assuming that this situation holds, the sad
point equations for the fields correspond to

1

C

dH

dwA~r !
5

1

2xNB
@wA~r !2wB~r !#1fA~r !2 f A50,

~23!

1

C

dH

dwB~r !
5

1

2xNB
@wB~r !2wA~r !#1fB~r !2 f B50,

~24!

where

fk~r !52
n

C

d^ ln Q&
dwk~r !

, k5A,B ~25!

represents the local volume fraction of typek monomers.
These nonlinear equations for the ‘‘self-consistent’’ poten
fields wA ,wB are the equations of self-consistent mean-fi
theory ~SCMFT! @28–30#.

fk(r ) can be decomposed into a sum of termsfki(r ),
which represent the contribution to the local volume fracti
of type k monomers from polymers of speciesi:

fk~r !5(
i

fki~r !52
n

C (
i

pi

d ln Qi

dwk~r !
. ~26!

Each term in this sum can be written in terms of the sing
polymer propagators@27#

fAi~r !5
f Api

Qi
E

0

1

ds qAi~r ,s!qAi
† ~r ,12s!, ~27!

fBi~r !5
f Bpi

Qi
(

j
E

0

1

ds qB~r ,s!qBi j
† ~r ,12s!. ~28!

qBi j
† (r ,s) is the propagator of thej th B chain of the i th

polymer species. It satisfies Eq.~10! and starts on the end o
theB chain tethered to the backbone. It is therefore subjec
the initial condition

qBi j
† ~r ,0!5qAi

( j 21)~r ,t j !qAi
† ~r ,12t j !. ~29!

These equations complete the description of SCMFT for
case of a random graft copolymer melt withquencheddisor-
der.

In the annealedcase, the formulas are slightly differen
The local volume fraction of speciesk monomers is given by

fk~r !52
n

C

d ln^Q&
dwk~r !

~30!

and can also be written as a sum of the volume fractions
the different polymer species,

fk~r !5(
i

fki~r !52
n

C

1

^Q& (
i

pi

dQi

dwk~r !
. ~31!
2-4
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Again, these species volume fractions can be expresse
terms of single-chain propagators, but this time normaliz
with the averaged partition function̂Q&:

fAi~r !5
f Api

^Q& E0

1

ds qAi~r ,s!qAi
† ~r ,12s!, ~32!

fBi~r !5
f Bpi

^Q& (
j
E

0

1

ds qB~r ,s!qBi j
† ~r ,12s!. ~33!

It is possible to show from Eqs.~27! and ~28! for the
quenched volume fractions that (1/V)*drfki(r )5 f kpi , in-
dicating that the average volume fraction of polymers fro
each species is fixed irrespective of the saddle point valu
the w fields. This is not necessarily true for the annea
ensembles where the free energy may be lowered by ch
ing the average number of polymers in each species. H
ever, the overallA and B volume fractions (1/V)*drfk(r )
5 f k are fixed in both situations, quenched and annealed

Alternatively for the annealed case, instead of keep
track of all the different propagators for each realization
the disorder, we can simply use the averaged propagator~20!
to calculate the totalA andB monomer densities:

fA~r !5
f A

^Q&E0

1

ds q~r ,s!q†~r ,12s!, ~34!

fB~r !5
f B

^Q& (
j
E

0

1

ds qB j
† ~r ,s!qB~r ,12s!. ~35!

In this case, the backwards propagatorqB j
† (r ,s) starts

from the end of theB chain tethered to the backbone at sitej.
This object satisfies the diffusion equation~10! with the ini-
tial condition

qB j
† ~r ,0!5q( j 21)~r ,t j !q

†~r ,12t j !. ~36!

It is important to note that Eqs.~34! and~35! are simpler
and less computationally demanding to use for the anne
case than Eqs.~32! and~33!. However, Eqs.~34! and~35! do
not contain information on the monomer densities of the
dividual chain species, only on the overall monomer den
ties irrespective of what type of polymer it is attached
Nevertheless, they can provide a considerable cost savin
situations that do not demand such species accounting.

IV. NUMERICAL METHODS

In order to find saddle points numerically and there
implement SCMFT, we use a relaxation method

] tw2~r ,t !52l
dH

dw2~r ,t !
, ] tw1~r ,t !52l

dH

dw1~r ,t !
,

~37!

the equilibrium values of which correspond to the sad
point equations. Here ‘‘time’’t is a continuous paramete
describing the progress of field iterations to approach
saddle point andl is an arbitrary relaxational paramete
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Since the saddle points can be anywhere in the comp
plane, w2 and w1 have real and imaginary parts, so th
complex equations~37! are actually a set of four real equa
tions. It turns out that the saddle point value ofw2 is purely
real andw1 is purely imaginary@26#, sowA andwB are both
real and the number of real equations is reduced to two.

Writing Eqs. ~37! in terms of the realwA(r ) and wB(r )
fields and using an explicit~forward Euler! time discretiza-
tion leads to

wA
j 11~r !5wA

j ~r !12lF 1

2xNB
@wB

j ~r !2wA
j ~r !#

1fB
j ~r !2 f BG ,

wB
j 11~r !5wB

j ~r !12lF 21

2xNB
@wB

j ~r !2wA
j ~r !#

1fA
j ~r !2 f AG . ~38!

Superscripts in these expressions refer to the time s
Our basic procedure is as follows. We start with some ini
configuration for thewk fields, either random or containin
the symmetry of a particular phase. These are used to d
mine the propagators by solving the diffusion equations~10!
and ~13!. The propagators are used to findfA andfB from
Eqs. ~27! and ~28! for the quenched case or Eqs.~32! and
~33! for the annealed case. We then updatewA and wB ac-
cording to Eq.~38!, the updated fields are used as the n
initial fields, and the procedure is repeated until the fie
attain equilibrium values. At every iteration the monom
volume fraction of each species is calculated so it is eas
monitor the density configurations. In the case of annea
disorder, a considerable computational savings is obtaine
restricting attention to the averaged propagators and su
tuting Eqs.~34! and ~35! for Eqs.~32! and ~33! up until the
last field iteration. At this point, Eqs.~32! and ~33! are em-
ployed one more time so that the individual species dens
may be accessed.

We solve the various diffusion equations using a ps
dospectral algorithm developed by Tzeremeset al. @31#,
which is referred to as asplit-step Fourieralgorithm. The
integrals in equations such as Eqs.~27!, ~28!, ~32!, and~33!
are approximated using Simpson’s rule, which is no m
expensive computationally than a midpoint approximatio
but has a truncation error that goes likeDs4 and is consistent
with the accuracy of the split-step Fourier algorithm.

All simulations were done in two dimensions on a 6
364 lattice with periodic boundary conditions. Contour st
sizes for theA backbone andB grafts were set atDsA
50.0125 andDsB50.025, respectively. In all the results pre
sented, we observed no noticeable changes upon furthe
ducing these contour step sizes.
2-5
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FIG. 2. Density plot ofA monomers for the quenched system withp50.333, NA /NB52, xNB510. ~a! Density ofA monomers.~b!
Density ofA monomers from polymers with zero branches,~c! one branch,~d! two branches, and~e! three branches. Distances are in un
of RgB . Box size is 12.6314.78.
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V. RESULTS AND DISCUSSION

A. Quenched versus annealed disorder

For the purposes of comparing the behavior of
quenched and annealed ensembles we restrict attention t
case ofm53 and thereby limit the possible polymer arch
tectures to those with zero, one, two, or three branches. E
polymer backbone has three possible graft points ats 5 1/4,
1/2, and 3/4. At each of these sites aB chain is attached with
probability p. This model results in the eight types of pol
mers, as shown in Fig. 1. Within the course of our simu
tions, we monitored the densities ofA and B segments at-
tached to polymers with zero, one, two, and three branc

One set of simulations for thequenchedmodel was per-
formed with p50.333~average of one branch per polyme!
05180
e
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and with the backbone twice as long as a branchNA /NB
52. This sets the average volume fractions ofA and B
monomers atf A50.667 and f B50.333, respectively. We
started with random initial conditions in a periodic cell
area (25.6RgB)2. For xNB*5, i.e., above the order-disorde
transition ~ODT!, we observed a microphase segrega
phase with hexagonal packing where theB monomers
~branches! form the insides of the circular aggregates. Clo
to the ODT, a defect-free hexagonal phase forms easily~at
xNB55 it takes around 5000 time steps using a relaxat
parameter ofl50.5). At higher xNB , the interfaces are
steeper and longer runs are required to anneal out de
from simulations that are started from random initial con
tions.

In order to look more closely at the structure of theA-B
interfaces, we chose a box size to capture one cell of
hexagonal lattice and seeded it using an initial condition w
2-6



in

d

e

-
n

or
r

th
l
m
in

al
by

the

sys-
two
that
d in

a

of

e
o,
f

r

nd

x
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hexagonal symmetry. The box size was determined by fix
the number of lattice points to 64364 and varying the lattice
spacing in thex and y directions to find a minimum free
energy per unit volume (H/V). Figure 2~a! shows the total
volume fraction ofA ~backbone! monomers for the quenche
system. Figure 2~b! shows the contribution to theA volume
fraction from the polymers with no branches. Figures 2~c!,
~d!, and ~e! correspond to theA volume fraction contribu-
tions from one, two, and three branched polymers, resp
tively. The zero branched polymers (A homopolymers! tend
to be concentrated in theA-rich region, particularly at three
fold vertices delineating adjacent Wigner-Seitz cells. In co
trast, polymers with two and three grafts tend to be m
strongly localized along theA-B interfaces. This allows thei
branches to more easily stretch into the discreteB-rich do-
mains.

Simulations of the annealed model were very similar;
ODT occurred at roughly the samexNB and the hexagona
microphase morphology was also observed with the sa
periodicity. To compare them in detail, we have plotted

FIG. 3. Simulation results for quenched~solid lines! and an-
nealed~dashed lines! systems with the parameters of Fig. 2. Volum
fractions ofA andB monomers from polymers with zero, one, tw
and three branches are taken from a slice through the center o
circles as shown by the dashed line in Fig. 2~a!. The overall volume
fractions~not shown! of A or B monomers are indistinguishable fo
the quenched and annealed systems.
05180
g

c-

-
e

e

e

Fig. 3~a! the volume fraction profiles of a one-dimension
slice cutting through the center of the circles as indicated
the dashed line in Fig. 2~a!. Interestingly, thetotal volume
fraction of A monomers is indistinguishablefor the quenched
and annealed cases, but the partial volume fractions of
different species differ as is shown in Fig. 3~a!. Figure 3~b!
shows the analogous plot for theB monomers. There are
more zero and three branched polymers in the annealed
tem than in the quenched system and less one and
branched polymers. This can be understood by realizing
in the annealed system, a one branched polymer situate
the A region and a two branched polymer located in aB
domain can lower their overall energy by exchanging
branch ~and thereby annihilating! to create a pair of zero
branch and three branch polymers. The global population

the

FIG. 4. Simulations of copolymers with quenched disorder a
parametersp50.333, NA /NB51, xNB55.9. ~a! Total volume
fraction of A monomers.~b! Volume fraction ofA monomers from
zero branched copolymers and~c! three branched copolymers. Bo
size is 25.6RgB325.6RgB .
2-7
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branches and overall composition is not affected by this
change, but the individual species densities clearly resp
to the local thermodynamic forces that act upon them.

The observation that theoverall volume fraction patterns
and corresponding saddle point potential fields are indis
guishable between the quenched and annealed cases
strong support to the naive expectation that the free ener
and thermodynamic properties of block and graft copolym
with quenched and annealed disorder should be identica
the thermodynamic limit. We caution the reader, howev
that this conclusion is likely restricted to microphase se
rated states, and not to the ‘‘glassy states’’ that have b
postulated to exist in certain random heteropolymer mod
@19,15#. It is also important to note that certain properties
measurements may also be sensitive to particular poly

FIG. 5. Simulations of copolymers with quenched disorder a
parametersp50.333,NA /NB51, xNB57.0 ~a! Total volume frac-
tion of A monomers.~b! Volume fraction ofA monomers from zero
branched and~c! three branched copolymers. Box size is 25.6RgB

325.6RgB .
05180
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species components, in which case differences between
nealed~living! and quenched systems can be observed.

B. Macrophase and microphase separation

A very different phase behavior was found in simulatio
when we changed the block length ratios toNA /NB51 and
kept p50.333. This case of longer grafts is compositiona
symmetric withf A5 f B51/2. Figures 4 –6 show this system
with quenched disorderat variousxNB parameters. These
were started with random initial fields and in a simulati
cell of area 25.6RgB325.6RgB . The system exhibitsmac-
rophase separationat xNB55.9 as shown in Fig. 8. There i
a region of nearly pureA monomers and a region that con
tains a mixture ofA and B. From the species volume frac
tions, we see that theA-rich domain is predominantlyA ho-

d FIG. 6. Simulations of copolymers with quenched disorder a
parametersp50.333, NA /NB51, xNB510.0. ~a! Total volume
fraction of A monomers.~b! Volume fraction ofA monomers from
zero branched and~c! three branched copolymers. Box size
25.6RgB325.6RgB .
2-8
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mopolymer ~zero branched polymers!, while the mixed
domain contains the other species. At a slightly higher s
regation strength ofxNB57.0, depicted in Fig. 5, there is
transition to amicrophasemorphology with theA monomers
forming the insides of the circular domains. Even after ve
long runs ~100 000 time steps usingl50.5) these do not
form a defect-free hexagonal array, although starting
simulations with a hexagonal ‘‘seed’’ structure does produ
an ordered array with lower energy. At even higherxNB
510, shown in Fig. 6, we observe a transition to a lame
microphase structure. Defects are prevalent here as well
indicate the existence of metastable states, since the perf
ordered lamellar structure has lower free energy.

The annealed case~not shown! follows a similar pattern
to that just described, but with the change from macroph
to microphase and hexagonal to lamellar occurring at slig
different values ofxNB . For instance, thexNB57 case
shown in Fig. 5 reverts to macrophase separation when
disorder is annealed. For larger values of the segrega
strength, we have also observed that the period of the lam
lar phase is slightly larger for the annealed system than
quenched. We determined this by seeding the systems w
periodic function~cosine! of period equal to the length of
side of the simulation cell and then varying this length
minimize the free energy per unit volume.

These discrepancies in phase behavior are due to the
ferent amounts of the individual species in the quenched
annealed systems. As previously stated, the average vo
fractions of each species for the quenched system are fixe
(1/V)*drfAi

(quenched)(r )5 f A pi while the average volume
fractions for the annealed system may deviate from th
values. If we fix the average volume fractions to be the sa
by adjusting thepi ’s, then it is straightforward to show tha
at the mean-field level, the two theories are the same
other words the annealed system with some given value opi

is the same as a quenched system withpi8
5(1/f AV)*drfAi

(annealed)(r ). However pi8 may not corre-
spond to the probability distributionpk(12p)m2k described
in our model for a polymer withk branches andm sites. In
Fig. 7 we plot the ratio

FIG. 7. g i vs xNB for the annealed system withp50.333,
NA /NB51. The quenched system corresponds tog i51.
05180
g-

y

e
e

r
nd
tly

se
ly

he
on
el-
e
a

if-
d

me
at

e
e,

In

g i5

1

VE drfAi

f A pi

for the zero, one, two, and three branched volume fracti
at different values ofxNB using the annealed system wit
the same composition as the systems shown in Figs. 4–6
xNB55 both the quenched and annealed ensembles a
the homogeneous disordered phase and are indistinguish
Evidently the largest deviation occurs atxNB57 where the
annealed system shows macrophase separation and
quenched shows microphase separation.

When the grafting probability was increased top
50.667, or when the length of the backbone was increa
relative to the branches to a value ofNA /NB52, we did not
observe macrophase separation for any value ofxNB . Foster
et al. @24# performed a random phase approximation~RPA!
calculation on a closely related model to determine the
rameter range in which the homogeneous disordered p
was unstable to macrophase or microphase separation. In
approximation, where the free energy is expanded to q
dratic order in thew fields, there is no distinction betwee
the quenched and annealed ensembles. Figure 8 shows
stability results for the present case ofm53 where there are
at most three branches per backbone.

According to this phase diagram, systems with grafti
probabilities abovep'0.25 should not be subject to mac
rophase separation. However we observe macrophase s
ration in our simulations for grafting probabilities as high
p50.5. Since our results do not involve any approximatio
beyond the mean-field approximation, this discrepancy
veals the limitations of the RPA. In particular, our numeric
calculations do not make assumptions that the density
potential fields are either small in amplitude or slowly var
ing in space.

FIG. 8. Phase diagram indicating regions where the disorde
phase is unstable to macrophase or microphase separation acco
to the RPA.
2-9
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VI. CONCLUDING REMARKS

We have constructed a simple, yet reasonably realis
field theory model of randomly grafted copolymer melts th
has permitted a detailed comparison between systems w
the disorder is quenched and systems where it is anne
We have carried out simulations of the field theory for the
two cases by invoking the mean-field approximation~SC-
MFT!. In qualitative terms, quenched and annealed syst
are quite similar and under most circumstances that we
foresee, it should be permissible to approximate quenc
averages by computationally more efficient annealed a
ages. Specifically, we have observed that under condit
where well-formed mesophases are obtained, the overall
ume fraction profiles and free energies of quenched and
nealed systems are very similar. Nevertheless, the distr
tions of individual copolymer species within suc
mesophases can be quite different in a system where
chemical disorder is fixed in the molecules~quenched! than
in a ‘‘living’’ system where polymers can change their com
positions or architectures~annealed!.

It was interesting that when we performed simulatio
closer to the ODT where macrophase separation was
.
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es
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served, larger differences~in total volume fractions and lo-
cations of phase boundaries! between quenched and anneal
systems were detected. In part, this may reflect the finite
of our simulations, but the discrepancies appear too large
insensitive to numerical refinement for this to be the on
explanation. It would seem that the ability of annealed s
tems to respond to local thermodynamic forces by adjus
molecular bonding can produce genuinely different equil
rium states of self-assembly than can be obtained
quenched systems. Thus, it is our view that the naive pic
of equivalence of quenched and annealed systems in the
modynamic limit does not strictly hold. Finally, we note th
any discrepancies between quenched and annealed sys
in these regions of the phase diagram will undoubtedly
sensitive to fluctuation corrections not included in our S
MFT simulations.

ACKNOWLEDGMENTS

This work was supported by the National Science Fo
dation under Grant No. DMR-0312097. Use of the UCS
MRL Central Computing Facilities supported by the NSF
also gratefully acknowledged.
. E

m.

les

e

ena,
@1# F.S. Bates and G.H. Fredrickson, Phys. Today52, 32 ~1999!.
@2# L. Leibler, Macromolecules13, 1602~1980!.
@3# Thermoplastic Elastomers, 2nd ed., edited by G. Holden, N. R

Legge, R. P. Quirk, and H. E. Schroeder,~Hanser/Gardner,
Cincinnati, OH, 1996!.

@4# H. Pernot, M. Baumert, F. Court, and L. Leibler, Nat. Mater.1,
54 ~2002!.

@5# M. Kamigaito, T. Ando, and M. Sawamoto, Chem. Re
~Washington, D.C.! 101, 3689~2001!.

@6# A.V. Dobrynin and L. Leibler, Europhys. Lett.36, 283 ~1996!.
@7# A.V. Dobrynin and L. Leibler, Macromolecules30, 4756

~1997!.
@8# A.N. Semenov, J. Phys. II7, 1489~1997!.
@9# A.N. Semenov and A.E. Likhtman, Macromolecules31, 9058

~1998!.
@10# A.N. Semenov, Eur. Phys. J. B10, 497 ~1999!.
@11# A.V. Subbotin and A.N. Semenov, Eur. Phys. J. A7, 49 ~2002!.
@12# G.H. Fredrickson and S.T. Milner, Phys. Rev. Lett.67, 835

~1991!.
@13# G.H. Fredrickson, S.T. Milner, and L. Leibler, Macromolecul

25, 6341~1992!.
@14# E.I. Shakhnovich and A.M. Gutin, J. Phys.~Paris! 50, 1843

~1989!.
@15# C.D. Sfatos, A.M. Gutin, and E.I. Shakhnovich, Nuovo C

mento D16, 879 ~1994!.
@16# A.M. Gutin, C.D. Sfatos, and E.I. Shakhnovich, J. Phys. A27,
7957 ~1994!.

@17# C.D. Sfatos and E. I Shakhnovich, Phys. Rep.288, 77 ~1997!.
@18# C.D. Sfatos, A.M. Gutin, and E.I. Shakhnovich, Phys. Rev

48, 465 ~1993!.
@19# A.K. Chakraborty, E.I. Shakhnovich, and V.S. Pande, J. Che

Phys.108, 1683~1998!.
@20# S. Qi, A.K. Chakraborty, and N.P. Balsara, J. Chem. Phys.115,

3387 ~2001!.
@21# S. Qi et al., Phys. Rev. Lett.82, 2896~1999!.
@22# S. Qi and A.K. Chakraborty, J. Chem. Phys.115, 3401~2001!.
@23# A. Shinozaki, D. Jasnow, and A. Balazs, Macromolecules27,

2496 ~1994!.
@24# D.P. Foster, D. Jasnow, and A. Balazs, Macromolecules28,

3450 ~1995!.
@25# M. Mezard, G. Parisi, and M. A. Virasoro,Spin Glass Theory

and Beyond, Lecture Notes in Physics Vol. 9~World Scientific,
Teaneck, NJ, 1987!.

@26# G.H. Fredrickson, V. Ganesan, and F. Drolet, Macromolecu
35, 16 ~2002!.

@27# K. Freed, Adv. Chem. Phys.22, 1 ~1972!.
@28# F. Schmid, J. Phys.: Condens. Matter10, 8105~1998!.
@29# M.W. Matsen and M. Schick, Phys. Rev. Lett.72, 2660~1994!.
@30# M.W. Matsen and M. Schick, Curr. Opin. Colloid Interfac

Sci. 1, 329 ~1996!.
@31# G. Tzeremes, K.O. Rasmussen, T. Lookman, and A. Sax

Phys. Rev. E65, 041806~2002!.
2-10


